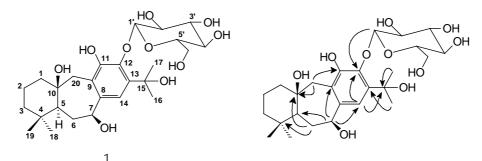
A New Diterpene Glycoside from Isodon forrestii

Shuang Xi MEI¹, Yun Xin DENG², Quan Bin HAN¹, Zhong Wen LIN¹, Han Dong SUN¹*


¹Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204 ² Department of Pharmacy, Guiyang Medical College,Guiyang 550000

Abstract: A new diterpene glycoside named $9(10\rightarrow 20)$ -abeo- 7β , 10β , 11, 15-tetrahydroxy-8, 11, 13-abietatrien-12-O- β -D-glucopyranoside was isolated from aerial parts of *Isodon forrestii*. Its structure was determined by means of spectroscopic studies.

Keywords: *Isodon forrestii*, diterpene glycoside, abietanoid; $9(10\rightarrow 20)$ -abeo-7 β ,10 β ,11,15-tetra-hydroxy-8,11,13-abietatrien-12-O- β -D-glucopyranoside.

The genus *Isodon* has been shown to be a rich source of diterpenes, especially the highly oxidized *ent*-kaurene diterpenoids with various biological activities¹⁻³. The chemical constituents of *Isodon forrestii* was reported by Yun Long Xu *et al.*⁴. We have investigated the titled plant collected in another place, from the 70% acetone extract of the aerial parts of *I. forrestii*, seven compounds including a new diterpene glycoside **1** were isolated by a combination of silica gel, preparative TLC and recrystallization.

Figure 1 The key HIVIBC correlations of	Figure 1	he key HMBC correlations of 1
--	----------	--------------------------------------

9(10 \rightarrow 20)-Abeo-7 β ,10 β ,11,15-tetrahydroxy-8,11,13-abietatrien-12-O- β -D-glucopyranoside **1**, C₂₆H₄₀O₁₀, [α]^{24.7}_D –24.05 (c=0.291, C₅H₅N); UV spectrum: 282.5, 218.5 and 206 nm and IR spectrum: 1643, 1587 cm⁻¹ exhibited the presence of aromatic ring; in ¹H and ¹³C NMR spectra (**Table 1**) the signals associated with a β -D-glucopyranoside were readily recognized. The DEPT spectrum gave signals of aglycone moiety, four methyls (δ 31.9, 31.6, 31.4, 22.1), five methylenes (δ 42.7, 42.3, 40.7, 35.6, 19.1), two methines Shuang Xi MEI et al.

(δ 73.0, 55.8), three quaternary carbons (δ 72.3, 70.3, 34.5) and six aromatic carbons (δ 149.9, 144.5, 142.8, 139.3, 122.2, 112.0). The spectral data above suggested that the aglycone moiety of **1** was a 20(10 \rightarrow 9)-abeo-abietanoid with aromatic C-ring⁵. Its HMBC spectra (**Figure 1**) determined the glucose moiety was located at C-12, and four hydroxyl groups were at C-7, C-10, C-11 and C-15, respectively. Furthermore, its Roesy spectrum showed that H-7 correlated to H-5 α and H-20 α , H-1 β to H-20 β and H-1 α to H-20 α , confirming β -oriented 7-OH and 10-OH. Thus, compound **1** was elucidated as

9(10 \rightarrow 20)-abeo-7 β ,10 β ,11,15-tetrahydroxy-8,11,13-abietatrien-12-O- β -D-glucopyranosid e.

Table 1 1 H (400 MHz) and 13 C (100.6 MHz) NMR spectral data for 1 (in C₅D₅N)

No.	С	No.	С	No.	H (J Hz)	No.	H (J Hz)
1	42.3 (t)	14	112.0 (d)	1α	1.53 (m)	18	0.96 (s)
2	19.1 (t)	15	72.3 (s)	1β	1.96 (m)	19	1.14 (s)
3	42.7 (t)	16	31.6 (q)	2α	1.32 (m)	20α	2.62 (d, 14.1)
4	34.5 (s)	17	31.4 (q)	2β	2.11 (m)	20β	3.87 (d, 14.1)
5	55.8 (d)	18	31.9 (q)	3α	1.24 (m)	1'	5.33 (d, 8.1)
6	35.6 (t)	19	22.1 (q)	3β	1.40 (m)	2'	4.30 (overlap)
7	73.0 (d)	20	40.7 (t)	5α	1.60 (d, 10.1)	3'	4.19 (t, 9.0)
8	144.5 (s)	1'	106.5 (d)	6α	2.34 (m)	4'	4.30 (overlap)
9	122.2 (s)	2'	75.2 (d)	6β	2.44 (m)	5'	3.80 (m)
10	70.3 (s)	3'	78.1 (d)	7α	5.26 (d, 9.7)	6′a	4.44 (dd, 9.9, 1.7)
11	149.9 (s)	4'	70.9 (d)	14	8.03 (s)	6′b	4.30 (overlap)
12	142.8 (s)	5'	79.2 (d)	16	1.92 (s)		
13	139.3 (s)	6'	61.9 (t)	17	2.00 (s)		

References

- 1. T. Fujita, Y. Takeda, H. D. Sun, Y. Minami, Planta Med., 1988, 54, 414.
- 2. I. Kubo, M. Taniguchi, Y. Satomura, T. Kubota, Agric. Biol. Chem., 1974, 38, 1261.
- 3. I. Kubo, N. Abo-Khatwa, T. Kubota, M. Taniguchi, J. Nat. Prod., 1981, 44, 593.
- 4. Y. N. Xu, I. Kubo, C. S. Tang, F. L. Zhang, H. D. Sun, *Phytochemistry*, 1993, 34, 461.
- 5. A. Kelecom, *Tetrahedron*, **1983**, *39*, 3603.

Received 10 July, 2000